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Abstract

Deep learning has revolutionized protein function prediction in the areas of gene expression, protein-protein 
interaction, and G-coupled receptor analysis. This paper explores the architectures, strategies, benchmark datasets, 
and evaluation metrics used in deep learning models for predicting gene expression, protein-protein interactions, 
and GPCR functions. The models leverage large-scale genomic data, sequence information, and evolutionary 
features to achieve remarkable accuracy in predicting protein function. The advancements in deep learning have 
provided valuable insights into biological systems, aiding drug discovery and therapeutic interventions. Further 
progress in deep learning methods holds great potential for enhancing our understanding of protein function and its 
role in biological processes.
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Introduction

Proteins are vital components that govern various 
biological processes in living organisms. Understanding 
their functions is crucial for uncovering the intricacies of 
cellular mechanisms, facilitating drug discovery, and 
enabling targeted therapeutic interventions. In recent 
years, deep learning has emerged as a transformative 
approach for predicting protein function, enabling 
researchers to explore complex biological systems at a 
deeper level. Research focused on protein function 
prediction, specically in the areas of gene expression, 
protein-protein interaction, and G-coupled receptor 
(GPCR) analysis, is of utmost importance due to the 
fundamental roles these processes play in biological 
systems.

The understanding of gene expression patterns is key to 
unravelling cellular mechanisms, leading to novel 
insights  for  drug discovery and therapeutic 
interventions (Dedrick, 2007). Protein-protein 
interactions are central to orchestrating complex cellular 
processes and signalling cascades, making their 
prediction critical for comprehending biological 
networks (Soleymani et al., 2022). GPCRs, acting as 
crucial mediators of cellular communication, represent 

important targets for pharmacological interventions, 
and accurately predicting their functions and 
interactions can greatly expedite drug development 
(Salon, et al.,2011).

The necessity for research in these areas is further 
underscored by the vast amount of genomic data 
available and the advent of deep learning architectures. 
Deep learning has demonstrated remarkable accuracy in 
deciphering gene expression proles, identifying 
interacting protein pairs, and effectively classifying 
GPCRs and predicting their ligands. The potential of 
deep learning in these domains offers a transformative 
approach to gain profound insights into complex 
biological systems and accelerate advancements in 
protein function prediction. Consequently, this research 
holds the potential to signicantly enhance our 
understanding of biological systems and pave the way 
for novel targeted therapeutic interventions.

Although various approaches exist for predicting 

protein function, this paper specically focuses on three 

key areas: gene expression data, protein interaction 

networks, and nuclear/GPCRs, which have proven to be 

effective in protein function prediction. Gene expression 

data aids in predicting protein function by identifying 
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co-expressed genes associated with specic functions. 

Protein interaction networks enable the prediction of 

protein function by identifying interacting partners of 

known functionally relevant proteins. Nuclear/GPCRs 

contribute to protein function prediction by identifying 

proteins that bind to specic nuclear receptors or GPCRs. 

The paper aims to provide a comprehensive review of 

cutting-edge deep learning methodologies, datasets, and 

challenges encountered in each of these areas, 

showcasing the remarkable progress achieved through 

the power of deep learning. Furthermore, it outlines 

potential future directions in this rapidly evolving eld. 

The advancements in protein function prediction hold 

immense promise for advancing our understanding of 

biological systems and translating this knowledge into 

innovative therapeutic interventions.

In the following sections, we will explore the 

architectures, strategies, and results of deep learning 

models applied in gene expression prediction, protein-

protein interaction analysis, and G-coupled receptor 

studies. By combining computational approaches with 

biological insights, we hope to pave the way for further 

breakthroughs in protein function prediction and 

ultimately contribute to our understanding of the 

intricate mechanisms governing life processes.

Articial Intelligence Techniques in Protein Function 
Prediction

Articial Intelligence (AI) techniques, particularly those 

rooted in deep learning, have signicantly advanced 

protein function prediction (PFP) methodologies. In this 

section, we delve into the studies focusing on the essence 

of AI's role in enhancing predictions within gene 

expression data, protein interaction networks, and 

nuclear/GPCRs. Furthermore, we shed light on the 

popular evaluation metrics pivotal in assessing the 

performance of these deep learning-based models.

One-D CNN (1-D CNN)  –  One-Dimens iona l 

Convolutional Neural Networks (1-D CNNs) are widely 

utilized in various applications such as personalized 

biomedical data categorization, early diagnosis, 

structural health monitoring, anomaly detection in 

power electronics, and identication of electrical motor 

failures. 1-D CNNs, which consist of convolutional and 

sub-sampling layers ,  have  achieved notable 

performance levels. These networks offer the advantage 

of being compact, easy to set up, and capable of 

performing real-time computations at a low cost, making 

them highly suitable for practical applications (Kiranyaz 

et al., 2021).

Feed Forward Multilayer Deep Neural Network- The 

Feed Forward Multilayer Deep Neural Network 

o p e r a t e s  b y  m u l t i p l y i n g  i n p u t  v a l u e s  w i t h 

corresponding weights, summing them, and comparing 

the total against a predened threshold. If the sum 

exceeds the threshold, the output is typically 1; 

otherwise, it is typically -1. This network architecture 

uses back-propagation to update weights, modifying 

each hidden layer based on the output values of the nal 

layer. This iterative process allows the network to learn 

and improve its performance (Hakala et al., 2022).

Multilayer Graph Convolutional Network (GCN) - 

Graph Convolutional Networks (GCNs) analyse-

neighbouring nodes to capture their characteristics. 

While Convolutional Neural Networks (CNNs) are 

designed for regular, structured data, GCNs are a 

generalized version that can handle irregular and non-

Euclidean structured data. Unlike CNNs, GCNs 

accommodate variable node connections and nodes 

without a specic order (Zangari et al., 2021).

Bi-directional Recurrent Neural Network (Bi-RNN)- 

Recurrent Neural Networks (RNNs) process inputs 

sequentially, but they lack the ability to consider future 

inputs when contextualizing the present input. Bi-

directional RNNs (Bi-RNNs) overcome this limitation by 

duplicating the RNN processing chain, allowing inputs 

to be evaluated in both forward and reverse temporal 

order. This enables Bi-RNNs to incorporate future 

context into the analysis (Huang et al., 2021).

Residual Neural Network (ResNet) - The ResNet 

technique enhances the accuracy and performance of 

Deep Neural Networks (DNNs) by adding extra layers. 

The concept behind this approach is that as the network 

deepens, the layers can capture more intricate features 

over time. For example, in image recognition, the initial 

layers may learn to detect edges, followed by layers that 

recognize textures, and ultimately layers that identify 

objects (Suh et al., 2021).

Deep Conditional Random Field- Conditional Random 

Field (CRF) is a powerful statistical modeling tool used 

for pattern recognition, particularly in text sequence 

classication. CRF inference enables precise boundary 

delineation and detailed segmentation, enhancing the 

accuracy of pixel-level label predictions. It serves as a 

valuable solution to address the limitations of CNNs in 

pixel-level labeling tasks (Arnab et al., 2018).

Maxout Neural Network- Max-out layer is a neural 

network layer where the activation function selects the 

maximum value among the inputs. It provides a exible 
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nonlinearity that can approximate any activation 

function by choosing from a set of linear pieces. Max-out 

networks have been employed for acoustic modeling in 

speech recognition tasks, showing promising results in 

various conditions (Wan et al., 2019).

Fig. 1 provides an overview of deep learning (DL) in 
three categories. The rst category encompasses 
convolutional deep neural networks, which utilize 

distinct neural network types and are effective in tasks 
like image classication and object detection. The second 
category consists of discriminant architectures that focus 
on predicting labels or numbers. Finally, the third 
category comprises generic architectures capable of 
training with limited data, where both input and output 
are known. These categories demonstrate the diverse 
applications and capabilities of DL in various domains.
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Fig.1. An overview of Deep Learning Technique

Evaluation Metrics for PFP based on Deep Learning

Evaluation metrics are crucial for assessing the 
performance and effectiveness of protein function 
prediction models based on deep learning. This section 
provides a brief overview of commonly used evaluation 
metrics in the eld, highlighting their relevance in 
assessing the accuracy and reliability of predictions.In 
this study, various evaluation metrics were employed, 
including accuracy, sensitivity, specicity, precision, 
recall, receiver operator characteristic (ROC), area under 
the curve for precision-recall (AUC-PR), average 
precision (AP), and F1-score. Additionally, the ranking 
loss statistic, originating from information retrieval, was 
utilized to train models for ranking items (You et al.,  
2021). Coverage, on the other hand, is a measure 
commonly used in unit testing to assess how many lines 
of code and execution pathways are covered by at least 
one test case. 

The formulas for some of these evaluation metrics are as 
follows:

- Accuracy: (TP + TN) / (TP + TN + FP + FN)

- Sensitivity (True Positive Rate): TP / (TP + FN)

- Specicity (True Negative Rate): TN / (TN + FP)

- Precision: TP / (TP + FP)

- Recall (Sensitivity): TP / (TP + FN)

- F1-score: 2 * (Precision * Recall) / (Precision + Recall)

Note: TP = True Positives, TN = True Negatives, FP = 
False Positives, FN = False Negatives.

These evaluation metrics play a crucial role in assessing 
the performance of deep learning-based protein function 
prediction models. The selection of appropriate metrics 
depends on the nature of the task, dataset characteristics, 
and specic goals of the prediction problem.

Methodology

Literature search and database

We conducted an extensive literature search to 
investigate the Protein Function Prediction Using Deep 
Learning. A combination of keywords “Deep Learning”, 
“Protein Function Prediction”,“Gene Expression Data”, 
“Protein Interaction Network”, “Nuclear/G-protein 
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Coupled receptor (GPCR)” were entered into the Google 
Scholar; PubMed/MEDLINE; Scopus; Web of Science; 
Elsevier and IEEE Xplore. The search was limited to 
publications in the English language. The purpose of this 
systematic review was to gather original and review 
articles that provide insights into Protein Function 
Prediction parameters using Deep Learning.

Inclusion and Exclusion criteria

For this systematic review, we applied inclusion and 
exclusion criteria to select relevant articles. We 
prioritized highly reviewed articles and abstracts that 
focused on protein function prediction using deep 
learning. Our inclusion criteria comprise: (a) studies 

dedicated to protein function prediction using deep 
learning; (b) data suitable for prediction of protein 
function; (c) studies investigating protein function 
prediction using gene expression data, the Protein 
Interaction Network, and the Nuclear/G-protein 
Coupled Receptor (GPCR) through a deep learning 
approach; (d) preference for recent or high-quality 
publications when multiple sources covered the same or 
overlapping data. Our exclusion criteria are studies 
exclusively focusing on protein function and structure. 
Fig. 2 illustrates Systematic Review process that was 
used to analyse protein function prediction using deep 
learning.
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AI Technique for Predicting PF Based on Sequence and 
Structure

Articial intelligence (AI) techniques have been 
successfully employed to predict protein function (PF) 
based on sequence and structure information. In gene 
expression prediction, deep learning models, such as 
convolutional neural networks (CNNs), have been 
utilized to analyze DNA and RNA sequences and 
capture relevant features for accurate expression level 
classication (Sapoval et al., 2022). For protein-protein 
interaction (PPI) prediction, AI techniques such as graph 
neural networks (GNNs) have been effective in 

modeling the complex structural information of 
interacting proteins, enabling the identication of 
interacting protein pairs(Zhou et al., 2022).Additionally, 
in G-coupled receptor (GPCR) analysis, deep learning 
approaches have been employed to predict GPCR 
functions and ligands by integrating sequence data, 
evolutionary information, and physicochemical 
properties (Yadav et al., 2022). These AI techniques have 
demonstrated their efcacy in predicting PF in each of 
the three areas: gene expression, PPI, and GPCR analysis.

By studying gene expression data, protein interaction 
networks, and nuclear/GPCRs individually, we aim to 

Fig.2. Flowchart for the Systematic Review of protein function prediction methods using DL approaches.
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provide a comprehensive understanding of the 
predictive models, techniques, and challenges 
associated with each domain. Through this detailed 
analysis, we strive to contribute to the advancement of 
protein function prediction and its practical applications 
in various biological and biomedical contexts. We 
believe that these three approaches can be used to 
improve the accuracy and robustness of protein function 
prediction models. We also believe that these 
approaches can be used to predict the functions of 
proteins that are not well-studied or that are difcult to 
predict using other methods.

Gene Expression Data

Gene expression data plays a vital role in understanding 
the functional characteristics of genes and their 
involvement in various biological processes. In the 
context of protein function prediction, the analysis of 
gene expression data provides valuable insights into the 
transcriptional activity and regulatory mechanisms 
underlying protein functions. This section focuses on the 
utilization of gene expression data for protein function 
prediction, highlighting relevant studies and their 
contributions to the eld.
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Table 1. Prediction of Gene Expression Data using DL

S.No.
 

Study
 

AI Technique
 

Accuracy (%)
 

Features
 

Dataset
 

Limitations
 

Improvements
 

1.
 Majji et al.,

 

2023
 

Deep Recurrent 
Neural 

Network-based 
chronological 
Horse Herd 
Political 
Optimization

 

Prediction Error 
(PE)

 
= 45.6%

 

minimal Root 
Mean Square 

Error 
(RMSE)=46.7% 

 

88%
 

Gene 

expression 
proles, 
Protein 
sequence

 

Gene 
expression 

and 
subcellular 
localization 
datasets

 
 

Limited to 
protein 
subcellular 

localization
 

2.
 

Alharbi 
and 

Vakanski, 
2023

 

Recent neural 
network 
architectures—

such as graph 
and transformer 
networks

 

-
 

gene 

expression 
analysis, 
covering 
feature 
engineering 

techniques
 

RNA-Seq 

methods
 

graph and 
transformer 
networks 
have not been 

used in ML 
methods of 
Cancer data 
classication

 

Multimodal  
fusion boost

classication can 
be improved

 

3.
 Martiny et 

al.
 

2021
 

Deep Neural 
Network

 88%
 

Gene 
expression 
proles, 
Protein 

sequence
 

Gene 
expression 
and 
subcellular 
localization 

datasets
 

 

Limited to 

protein 
subcellular

 

localization
 

Integration of 
protein sequence 
information

 

4.
 Bardak et 

al.,
 

2021
 

Deep Neural 

Network
 88%

 

Gene 
expression 
proles, 
Protein 
sequence

 

Gene 
expression 
and protein-

protein 
interaction 
datasets

 

Limited to 
protein-

protein 
interactions

 

Integration of 
additional 
features

 

5.
 

Aggarwal 
and Hasija, 
2022

 
1D CNN + DNN 

 
-

 

combining 

with PPI 
data; gene 
expression 
data

 

sequence 

data, 
genomic 
expression, 
3D 
structures, 

and data on 
protein-

 

protein 
interaction  

-
 

Integration of 
gene expression 
prole with 
current 
SOTA(state-of-

the-art) protein 
sequence 
representations  

 Dash(-) means not available.
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From the table1, it is evident that several studies have 
explored the use of deep learning algorithms for 
predicting gene expression data in the context of protein 
function prediction. Different deep learning techniques, 
such as Deep Neural Networks (DNNs) and Recurrent 
Neural Networks (RNNs), have been applied in these 
studies. Understanding the biological mechanisms 
behind the predictions is crucial for gaining insights into 
protein function. Future improvements could focus on 
developing more interpretable models or integrating 
domain knowledge to enhance biological inter-
pretability. Overall, while deep learning has shown 
promise in predicting gene expression data for protein 
function, there is a need for further exploration and 
advancement. Addressing the limitations and 
incorporating improvements suggested in the table 1 can 
lead to more accurate and biologically meaningful 
predictions, facilitating a deeper understanding of 
protein function and its implications in biological 
processes.

Protein Interaction Network

Protein interaction networks provide valuable insights 
into the complex web of interactions between proteins, 
offering a wealth of information for predicting protein 
function. Deep learning approaches have been applied 
to leverage protein interaction network data for accurate 
protein function prediction. This section focuses on the 
utilization of protein interaction networks in protein 
function prediction, highlighting relevant studies and 
their contributions to the eld. Table 2 provides a concise 
overview of the approaches, accuracy percentages, 
features used, datasets employed, and limitations of 
each study. It highlights the potential for future 
improvements, such as exploring transfer learning, 
multi-view learning, and attention mechanisms, to 
enhance accuracy and address the limitations identied.

Across the studies from Table 2, it is evident that deep 
learning techniques, such as Ensemble of Deep 
Autoencoders, Maxout neural networks and DNNs, 
have proven effective in leveraging protein interaction 
network data for protein function prediction. Integration 
of additional features, such as protein sequence and 
structure information, has contributed to improved 
accuracy. However, challenges including data sparsity, 
class imbalance, computational complexity, and 
interpretability remain, and addressing these challenges 
is crucial for further advancements in the eld.

Nuclear/G-protein Coupled receptor(GPCR)

Nuclear/G-protein coupled receptors (GPCRs) play a 
crucial role in cellular signalling pathways and have 

attracted signicant attention in research. However, a 
substantial number of GPCRs lack experimental 
structures, necessitating the use of computational 
methods to predict their structures and interactions with 
ligands. Deep learning approaches have emerged as 
valuable tools in predicting protein function, including 
for nuclear/GPCRs, by harnessing the wealth of 
information present in their sequences and structural 
properties. By leveraging these computational methods, 
researchers aim to enhance our understanding of cellular 
signalling, accelerate the discovery of novel therapeutic 
targets, and expedite the development of potential drug 
candidates for GPCRs.

The table 3 presents two key studies that employ deep 
learning approaches for predicting protein function 
specically for nuclear/G-protein coupled receptors 
(GPCRs). These studies focus on different aspects of 
nuclear/GPCRs and leverage various deep learning 
algorithms and datasets to achieve their objectives.The 
analysis highlights some common limitations in the 
eld. These include the availability of high-quality 
training data, interpretability of deep learning models, 
and the need to consider broader functional aspects 
beyond ligand binding prediction. Improvements can be 
made by integrating additional structural information or 
protein dynamics, exploring transfer learning 
techniques to leverage related tasks, and considering 
other features or data types to capture a comprehensive 
understanding of nuclear/GPCR functions.

In conclusion, while the studies demonstrate the 
potential of deep learning in predicting nuclear/GPCRs 
for protein function, there is a need to address limitations 
and further enhance the accuracy and biological 
relevance of predictions. By incorporating improve-
ments and overcoming challenges, deep learning models 
can contribute to a deeper understanding of nuclear/ 
GPCR functions and their role in cellular signalling 
pathways.

Conclusion

In this paper, we have delved into the domain of protein 
function prediction using deep learning techniques, with 
a specic focus on gene expression data, protein-protein 
interaction networks, and nuclear/G-protein coupled 
receptors (GPCRs). We reviewed key studies published 
until 2023, showcasing the application of deep learning 
algorithms in each area. From the analysis of the 
literature, it is evident that deep learning holds immense 
promise in predicting protein function based on gene 
expression data. Various models, such as DeepBind and 
DeepLoc, have demonstrated their effectiveness in 
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capturing sequence patterns and predicting subcellular 
localization. Similarly, in the realm of protein-protein 
interaction prediction, DeepPPI has shown potential in 
deciphering complex protein interactions from gene 
expression proles.Additionally, in the context of 
nuclear/GPCRs, models like dCRF-TM modelhave shed 
light on predicting ligand binding and overall protein 
function. However, challenges in data availability, 
interpretability, and capturing broader functional 
aspects remain areas for improvement.

Future Scope

As we move forward, several exciting avenues offer 
opportunities for advancing the eld of protein function 
prediction using deep learning:

Multi-modal data integration: Integrating diverse omics 
data, such as epigenetic modications, histone 
modications, and chromatin accessibility, with gene 
expression data can provide a holistic view of gene 
regulation and enhance prediction accuracy.

Interpretability enhancement: Developing more 
interpretable deep learning models or incorporating 
domain knowledge can unravel the biological 
mechanisms underlying predictions and enable more 
biologically meaningful insights.

Transfer learning and domain adaptation: Exploring 
transfer learning techniques, where pre-trained models 
are ne-tuned on specic datasets, can leverage 
knowledge from related tasks and improve prediction 
performance, especially in cases with limited data 
availability.

Structural information incorporation: Integration of 
structural features and protein dynamics information 
can enhance the accuracy and relevance of predictions 
for nuclear/GPCRs and other membrane proteins.

Utilizing explainable deep learning methods for protein 
function prediction to enhance accuracy and provide 
interpretability of predicted protein functions.

Benchmarking and standardized evaluat ion: 
Establishing benchmark datasets and standardized 
evaluation metrics will enable fair comparison of 
different deep learning models and encourage the 
development of more effective algorithms.

By addressing these future directions, the eld of protein 
function prediction can make substantial strides in 
deciphering the complex relationships between gene 
expression, protein interactions, and nuclear/GPCR 
functions. This deeper understanding will have broad 
implications in biology, medicine, and drug discovery, 
opening up new avenues for research and applications in 
the years to come.
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