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Abstract

Deep learning has revolutionized protein function prediction in the areas of gene expression, protein-protein
interaction, and G-coupled receptor analysis. This paper explores the architectures, strategies, benchmark datasets,
and evaluation metrics used in deep learning models for predicting gene expression, protein-protein interactions,
and GPCR functions. The models leverage large-scale genomic data, sequence information, and evolutionary
features to achieve remarkable accuracy in predicting protein function. The advancements in deep learning have
provided valuable insights into biological systems, aiding drug discovery and therapeutic interventions. Further
progress in deep learning methods holds great potential for enhancing our understanding of protein function and its
rolein biological processes.
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Protein-Protein Interaction, Recurrent Neural Networks(RNN).

Introduction

Proteins are vital components that govern various
biological processes in living organisms. Understanding
their functions is crucial for uncovering the intricacies of
cellular mechanisms, facilitating drug discovery, and
enabling targeted therapeutic interventions. In recent
years, deep learning has emerged as a transformative
approach for predicting protein function, enabling
researchers to explore complex biological systems at a
deeper level. Research focused on protein function
prediction, specifically in the areas of gene expression,
protein-protein interaction, and G-coupled receptor
(GPCR) analysis, is of utmost importance due to the
fundamental roles these processes play in biological
systems.

The understanding of gene expression patterns is key to
unravelling cellular mechanisms, leading to novel
insights for drug discovery and therapeutic
interventions (Dedrick, 2007). Protein-protein
interactions are central to orchestrating complex cellular
processes and signalling cascades, making their
prediction critical for comprehending biological
networks (Soleymani et al,, 2022). GPCRs, acting as
crucial mediators of cellular communication, represent

important targets for pharmacological interventions,
and accurately predicting their functions and
interactions can greatly expedite drug development
(Salon, et al.,2011).

The necessity for research in these areas is further
underscored by the vast amount of genomic data
available and the advent of deep learning architectures.
Deep learning has demonstrated remarkable accuracy in
deciphering gene expression profiles, identifying
interacting protein pairs, and effectively classifying
GPCRs and predicting their ligands. The potential of
deep learning in these domains offers a transformative
approach to gain profound insights into complex
biological systems and accelerate advancements in
protein function prediction. Consequently, this research
holds the potential to significantly enhance our
understanding of biological systems and pave the way
for novel targeted therapeutic interventions.

Although various approaches exist for predicting
protein function, this paper specifically focuses on three
key areas: gene expression data, protein interaction
networks, and nuclear/ GPCRs, which have proven to be
effective in protein function prediction. Gene expression
data aids in predicting protein function by identifying
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co-expressed genes associated with specific functions.
Protein interaction networks enable the prediction of
protein function by identifying interacting partners of
known functionally relevant proteins. Nuclear/ GPCRs
contribute to protein function prediction by identifying
proteins that bind to specific nuclear receptors or GPCRs.
The paper aims to provide a comprehensive review of
cutting-edge deep learning methodologies, datasets, and
challenges encountered in each of these areas,
showcasing the remarkable progress achieved through
the power of deep learning. Furthermore, it outlines
potential future directions in this rapidly evolving field.
The advancements in protein function prediction hold
immense promise for advancing our understanding of
biological systems and translating this knowledge into
innovative therapeutic interventions.

In the following sections, we will explore the
architectures, strategies, and results of deep learning
models applied in gene expression prediction, protein-
protein interaction analysis, and G-coupled receptor
studies. By combining computational approaches with
biological insights, we hope to pave the way for further
breakthroughs in protein function prediction and
ultimately contribute to our understanding of the
intricate mechanisms governing life processes.

Artificial Intelligence Techniques in Protein Function
Prediction

Artificial Intelligence (Al) techniques, particularly those
rooted in deep learning, have significantly advanced
protein function prediction (PFP) methodologies. In this
section, we delve into the studies focusing on the essence
of Al's role in enhancing predictions within gene
expression data, protein interaction networks, and
nuclear/GPCRs. Furthermore, we shed light on the
popular evaluation metrics pivotal in assessing the
performance of these deep learning-based models.

One-D CNN (1-D CNN) - One-Dimensional
Convolutional Neural Networks (1-D CNNs) are widely
utilized in various applications such as personalized
biomedical data categorization, early diagnosis,
structural health monitoring, anomaly detection in
power electronics, and identification of electrical motor
failures. 1-D CNNs, which consist of convolutional and
sub-sampling layers, have achieved notable
performance levels. These networks offer the advantage
of being compact, easy to set up, and capable of
performing real-time computations ata low cost, making
them highly suitable for practical applications (Kiranyaz
etal., 2021).

Feed Forward Multilayer Deep Neural Network- The
Feed Forward Multilayer Deep Neural Network
operates by multiplying input values with
corresponding weights, summing them, and comparing
the total against a predefined threshold. If the sum
exceeds the threshold, the output is typically 1;
otherwise, it is typically -1. This network architecture
uses back-propagation to update weights, modifying
each hidden layer based on the output values of the final
layer. This iterative process allows the network to learn
and improve its performance (Hakala et al., 2022).

Multilayer Graph Convolutional Network (GCN) -
Graph Convolutional Networks (GCNs) analyse-
neighbouring nodes to capture their characteristics.
While Convolutional Neural Networks (CNNs) are
designed for regular, structured data, GCNs are a
generalized version that can handle irregular and non-
Euclidean structured data. Unlike CNNs, GCNs
accommodate variable node connections and nodes
without a specific order (Zangariet al., 2021).

Bi-directional Recurrent Neural Network (Bi-RNN)-
Recurrent Neural Networks (RNNs) process inputs
sequentially, but they lack the ability to consider future
inputs when contextualizing the present input. Bi-
directional RNNs (Bi-RNNs) overcome this limitation by
duplicating the RNN processing chain, allowing inputs
to be evaluated in both forward and reverse temporal
order. This enables Bi-RNNs to incorporate future
contextinto the analysis (Huangetal., 2021).

Residual Neural Network (ResNet) - The ResNet
technique enhances the accuracy and performance of
Deep Neural Networks (DNNs) by adding extra layers.
The concept behind this approach is that as the network
deepens, the layers can capture more intricate features
over time. For example, in image recognition, the initial
layers may learn to detect edges, followed by layers that
recognize textures, and ultimately layers that identify
objects (Suhetal., 2021).

Deep Conditional Random Field- Conditional Random
Field (CRF) is a powerful statistical modeling tool used
for pattern recognition, particularly in text sequence
classification. CRF inference enables precise boundary
delineation and detailed segmentation, enhancing the
accuracy of pixel-level label predictions. It serves as a
valuable solution to address the limitations of CNNs in
pixel-level labeling tasks (Arnabet al., 2018).

Maxout Neural Network- Max-out layer is a neural
network layer where the activation function selects the
maximum value among the inputs. It provides a flexible
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nonlinearity that can approximate any activation
function by choosing from a set of linear pieces. Max-out
networks have been employed for acoustic modeling in
speech recognition tasks, showing promising results in
various conditions (Wanetal., 2019).

Fig. 1 provides an overview of deep learning (DL) in
three categories. The first category encompasses
convolutional deep neural networks, which utilize

distinct neural network types and are effective in tasks
like image classification and object detection. The second
category consists of discriminant architectures that focus
on predicting labels or numbers. Finally, the third
category comprises generic architectures capable of
training with limited data, where both input and output
are known. These categories demonstrate the diverse
applications and capabilities of DL in various domains.

Generative

Recurrent Neural
Network (RNN)

Long Short Term
Memory(LSTM)

Architecture

Bi- Directional

tDeep Auto-Encoder (DAE)]

Long Short

Term Memory
(Bi- LSTM)

Deep ,
Learning

Hybrid Deep Neural Network]|
(DNN)

Discriminative
Architecture
(Supervised)

T

Convolutional Neural
network (CNN)

Fig.1. An overview of Deep Learning Technique

Evaluation Metrics for PFP based on Deep Learning

Evaluation metrics are crucial for assessing the
performance and effectiveness of protein function
prediction models based on deep learning. This section
provides a brief overview of commonly used evaluation
metrics in the field, highlighting their relevance in
assessing the accuracy and reliability of predictions.In
this study, various evaluation metrics were employed,
including accuracy, sensitivity, specificity, precision,
recall, receiver operator characteristic (ROC), area under
the curve for precision-recall (AUC-PR), average
precision (AP), and Fl-score. Additionally, the ranking
loss statistic, originating from information retrieval, was
utilized to train models for ranking items (You et al.,
2021). Coverage, on the other hand, is a measure
commonly used in unit testing to assess how many lines
of code and execution pathways are covered by at least
one test case.

The formulas for some of these evaluation metrics are as
follows:

- Accuracy: (TP+TN) / (TP + TN + FP + EN)
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-Sensitivity (True Positive Rate): TP / (TP + FN)
-Specificity (True Negative Rate): TN / (TN + FP)

- Precision: TP / (TP + FP)

-Recall (Sensitivity): TP / (TP + FN)

-Fl1-score: 2* (Precision * Recall) / (Precision + Recall)

Note: TP = True Positives, TN = True Negatives, FP =
False Positives, FN = False Negatives.

These evaluation metrics play a crucial role in assessing
the performance of deep learning-based protein function
prediction models. The selection of appropriate metrics
depends on the nature of the task, dataset characteristics,
and specific goals of the prediction problem.

Methodology
Literature search and database

We conducted an extensive literature search to
investigate the Protein Function Prediction Using Deep
Learning. A combination of keywords “Deep Learning”,
“Protein Function Prediction”,”Gene Expression Data”,
“Protein Interaction Network”, “Nuclear/G-protein
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Coupled receptor (GPCR)” were entered into the Google
Scholar; PubMed/MEDLINE; Scopus; Web of Science;
Elsevier and IEEE Xplore. The search was limited to
publications in the English language. The purpose of this
systematic review was to gather original and review
articles that provide insights into Protein Function
Prediction parameters using Deep Learning.

Inclusion and Exclusion criteria

For this systematic review, we applied inclusion and
exclusion criteria to select relevant articles. We
prioritized highly reviewed articles and abstracts that
focused on protein function prediction using deep
learning. Our inclusion criteria comprise: (a) studies

dedicated to protein function prediction using deep
learning; (b) data suitable for prediction of protein
function; (c) studies investigating protein function
prediction using gene expression data, the Protein
Interaction Network, and the Nuclear/G-protein
Coupled Receptor (GPCR) through a deep learning
approach; (d) preference for recent or high-quality
publications when multiple sources covered the same or
overlapping data. Our exclusion criteria are studies
exclusively focusing on protein function and structure.
Fig. 2 illustrates Systematic Review process that was
used to analyse protein function prediction using deep
learning.

(N=100)

Studies Identified through various search Engines

Additional studies
from Google Scholar
(N=15)

Identification

v

Screened studies by titles and
abstracts (N=70)

Duplicate due to same
publication in different
databases (N=40)

v

v

articles

Full-text articles
reviewed(N= 50)

Total Number of

included(N=26)

Fig.2. Flowchart for the Systematic Review of protein function prediction methods using DL approaches.

Al Technique for Predicting PF Based on Sequence and
Structure

Artificial intelligence (AI) techniques have been
successfully employed to predict protein function (PF)
based on sequence and structure information. In gene
expression prediction, deep learning models, such as
convolutional neural networks (CNNs), have been
utilized to analyze DNA and RNA sequences and
capture relevant features for accurate expression level
classification (Sapoval et al., 2022). For protein-protein
interaction (PPI) prediction, Al techniques such as graph
neural networks (GNNs) have been effective in
IISU:;':'.’.“:-'-%

modeling the complex structural information of
interacting proteins, enabling the identification of
interacting protein pairs(Zhou et al., 2022).Additionally,
in G-coupled receptor (GPCR) analysis, deep learning
approaches have been employed to predict GPCR
functions and ligands by integrating sequence data,
evolutionary information, and physicochemical
properties (Yadav et al., 2022). These Al techniques have
demonstrated their efficacy in predicting PF in each of
the three areas: gene expression, PPI, and GPCR analysis.

By studying gene expression data, protein interaction
networks, and nuclear/GPCRs individually, we aim to
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provide a comprehensive understanding of the
predictive models, techniques, and challenges
associated with each domain. Through this detailed
analysis, we strive to contribute to the advancement of
protein function prediction and its practical applications
in various biological and biomedical contexts. We
believe that these three approaches can be used to
improve the accuracy and robustness of protein function
prediction models. We also believe that these
approaches can be used to predict the functions of
proteins that are not well-studied or that are difficult to
predict using other methods.

Gene Expression Data

Gene expression data plays a vital role in understanding
the functional characteristics of genes and their
involvement in various biological processes. In the
context of protein function prediction, the analysis of
gene expression data provides valuable insights into the
transcriptional activity and regulatory mechanisms
underlying protein functions. This section focuses on the
utilization of gene expression data for protein function
prediction, highlighting relevant studies and their
contributions to the field.

Table 1. Prediction of Gene Expression Data using DL

S.No. | Study Al Technique Accuracy (%) Features Dataset Limitations Improvements
EliigaIl{ecurrem Prediction Error Gene g(enrission
(PE) = 45.6% . P Limited to
Network-based e expression and .
Majji et al., - minimal Root 0 . protein
L 2023 chronological Mean Square 88% profiles, subcellular cubcellular
Horse Herd Error d Protein localization localization
Political (RMSE)=46.7% sequence datasets
Optimization e
raph and
Recent neural gjnfession ?rariformer
Alharbi network angl sis networks Multimodal
’ and architectures — ) COVQ}I]'il’l / RNA-Seq have not been | fusion boost
' Vakanski, | such as graph feature i methods used in ML classification can
2023 and transformer engineering methods of be improved
networks techniques Cancer data
d classification
Gene
Gene expression Limited to
Martiny ef | Deep Neural expression and rotein Integration of
3. Y P 88% profiles, subcellular | P protein sequence
al. 2021 Network Protein localization subcellular information
sequence datasets localization
Gene
Gene . .
expression expression Limited to Integration of
Bardak et | Deep Neural o > and protein- | protein- &t
4. 88% profiles, . . additional
al., 2021 Network . protein protein
Protein . . . . features
sequence interaction interactions
4 datasets
sequence
data, Integration of
combining | o sion brofilo with
Aggarwal with PPI 3Dp ! Surren ‘
5. and Hasija, | 1D CNN + DNN - data; gene -
2022 expression structures, SOTA (state-of-
da}:a and data on the-art) protein
protein- sequence
protein representations
interaction

Dash(-) means not available.
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From the tablel, it is evident that several studies have
explored the use of deep learning algorithms for
predicting gene expression data in the context of protein
function prediction. Different deep learning techniques,
such as Deep Neural Networks (DNNs) and Recurrent
Neural Networks (RNNs), have been applied in these
studies. Understanding the biological mechanisms
behind the predictions is crucial for gaining insights into
protein function. Future improvements could focus on
developing more interpretable models or integrating
domain knowledge to enhance biological inter-
pretability. Overall, while deep learning has shown
promise in predicting gene expression data for protein
function, there is a need for further exploration and
advancement. Addressing the limitations and
incorporating improvements suggested in the table 1 can
lead to more accurate and biologically meaningful
predictions, facilitating a deeper understanding of
protein function and its implications in biological
processes.

Protein Interaction Network

Protein interaction networks provide valuable insights
into the complex web of interactions between proteins,
offering a wealth of information for predicting protein
function. Deep learning approaches have been applied
to leverage protein interaction network data for accurate
protein function prediction. This section focuses on the
utilization of protein interaction networks in protein
function prediction, highlighting relevant studies and
their contributions to the field. Table 2 provides a concise
overview of the approaches, accuracy percentages,
features used, datasets employed, and limitations of
each study. It highlights the potential for future
improvements, such as exploring transfer learning,
multi-view learning, and attention mechanisms, to
enhance accuracy and address the limitations identified.

Across the studies from Table 2, it is evident that deep
learning techniques, such as Ensemble of Deep
Autoencoders, Maxout neural networks and DNNs,
have proven effective in leveraging protein interaction
network data for protein function prediction. Integration
of additional features, such as protein sequence and
structure information, has contributed to improved
accuracy. However, challenges including data sparsity,
class imbalance, computational complexity, and
interpretability remain, and addressing these challenges
is crucial for further advancements in the field.

Nucleat/G-protein Coupled receptor(GPCR)

Nuclear/G-protein coupled receptors (GPCRs) play a
crucial role in cellular signalling pathways and have
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attracted significant attention in research. However, a
substantial number of GPCRs lack experimental
structures, necessitating the use of computational
methods to predict their structures and interactions with
ligands. Deep learning approaches have emerged as
valuable tools in predicting protein function, including
for nuclear/GPCRs, by harnessing the wealth of
information present in their sequences and structural
properties. By leveraging these computational methods,
researchers aim to enhance our understanding of cellular
signalling, accelerate the discovery of novel therapeutic
targets, and expedite the development of potential drug
candidates for GPCRs.

The table 3 presents two key studies that employ deep
learning approaches for predicting protein function
specifically for nuclear/G-protein coupled receptors
(GPCRs). These studies focus on different aspects of
nuclear/GPCRs and leverage various deep learning
algorithms and datasets to achieve their objectives.The
analysis highlights some common limitations in the
field. These include the availability of high-quality
training data, interpretability of deep learning models,
and the need to consider broader functional aspects
beyond ligand binding prediction. Improvements can be
made by integrating additional structural information or
protein dynamics, exploring transfer learning
techniques to leverage related tasks, and considering
other features or data types to capture a comprehensive
understanding of nuclear/GPCR functions.

In conclusion, while the studies demonstrate the
potential of deep learning in predicting nuclear/ GPCRs
for protein function, there is a need to address limitations
and further enhance the accuracy and biological
relevance of predictions. By incorporating improve-
ments and overcoming challenges, deep learning models
can contribute to a deeper understanding of nuclear/
GPCR functions and their role in cellular signalling
pathways.

Conclusion

In this paper, we have delved into the domain of protein
function prediction using deep learning techniques, with
a specific focus on gene expression data, protein-protein
interaction networks, and nuclear/G-protein coupled
receptors (GPCRs). We reviewed key studies published
until 2023, showcasing the application of deep learning
algorithms in each area. From the analysis of the
literature, it is evident that deep learning holds immense
promise in predicting protein function based on gene
expression data. Various models, such as DeepBind and
DeepLoc, have demonstrated their effectiveness in
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capturing sequence patterns and predicting subcellular
localization. Similarly, in the realm of protein-protein
interaction prediction, DeepPPI has shown potential in
deciphering complex protein interactions from gene
expression profiles.Additionally, in the context of
nuclear/ GPCRs, models like dCRF-TM modelhave shed
light on predicting ligand binding and overall protein
function. However, challenges in data availability,
interpretability, and capturing broader functional
aspectsremain areas for improvement.

Future Scope

As we move forward, several exciting avenues offer
opportunities for advancing the field of protein function
prediction using deep learning:

Multi-modal data integration: Integrating diverse omics
data, such as epigenetic modifications, histone
modifications, and chromatin accessibility, with gene
expression data can provide a holistic view of gene
regulation and enhance prediction accuracy.

Interpretability enhancement: Developing more
interpretable deep learning models or incorporating
domain knowledge can unravel the biological
mechanisms underlying predictions and enable more
biologically meaningful insights.

Transfer learning and domain adaptation: Exploring
transfer learning techniques, where pre-trained models
are fine-tuned on specific datasets, can leverage
knowledge from related tasks and improve prediction
performance, especially in cases with limited data
availability.

Structural information incorporation: Integration of
structural features and protein dynamics information
can enhance the accuracy and relevance of predictions
for nuclear/ GPCRs and other membrane proteins.

Utilizing explainable deep learning methods for protein
function prediction to enhance accuracy and provide
interpretability of predicted protein functions.

Benchmarking and standardized evaluation:
Establishing benchmark datasets and standardized
evaluation metrics will enable fair comparison of
different deep learning models and encourage the
development of more effective algorithms.

By addressing these future directions, the field of protein
function prediction can make substantial strides in
deciphering the complex relationships between gene
expression, protein interactions, and nuclear/GPCR
functions. This deeper understanding will have broad
implications in biology, medicine, and drug discovery,
opening up new avenues for research and applications in
the years to come.
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